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Summary
The trigeminal ganglia are involved in transmission of orofacial sensitivity. The free
radical gas nitric oxide (NO) has recently been found to function as a messenger
molecule in both central and peripheral trigeminal primary afferent neurons. NO is
produced within neurons mainly by two enzymes: a constitutive (neuronal) form of
NO synthase (nNOS) or an inducible form of NOS (iNOS). The aim of the study was to
evaluate the distribution of trigeminal neurons according to size (small, medium and
large neurons) and to correlate the percentage of NOS-immunopositive neurons with
regard to neuronal size. The results showed a significant relationship between the
percentage of nNOS-immunopositive neurons and the size of neurons. Evaluation of
the percentage of nNOS-immunopositive neurons showed that they constitute about
50% of the total number of neurons and that they are represented mainly as large-
sized neurons. The iNOS immunolabelling was very faint in all neuronal types. Since
the nitroxidergic system is well represented in human trigeminal ganglia, this study
indicates that it could play a relevant role in trigeminal neurotransmission.
& 2009 Elsevier GmbH. All rights reserved.
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Introduction

The trigeminal ganglion (TG), also known as the
semilunar ganglion, is found within the inferolat-
eral aspect of Meckel’s cave. The anatomical
characteristics of the TG have been described
by means of anatomical dissection, computed
rved.
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tomography and unenhanced high-resolution mag-
netic resonance imaging (Daniels et al., 1986;
Rubinstein et al., 1994; Downs et al., 1996). The
shape of the TG varies from thin and regular to
thick and nodular, with the convex margin always
oriented inferolaterally (Downs et al., 1996). The
trigeminal nerve consists of numerous small fibers
within the posterior and superior aspect of Meckel’s
cave. In all cases, the TG is continuous with
the mandibular division of the trigeminal nerve
inferiorly at the level of the foramen ovale. The
trigeminal sensory system is very complex and is
characterized by the presence of two distinct
populations of primary afferent neurons. Most of
the neuronal cell bodies (perikarya) are located in
the TG, but some of them are found in the
mesencephalic trigeminal nucleus (MTN). Primary
sensory neurons conduct somatosensory informa-
tion to neurons of the central nervous system from
a variety of peripheral sensory receptors. TG
neurons innervate mainly mechanoreceptors, ther-
moreceptors and nociceptors in the face, oral
cavity and nasal cavities (Davies, 1988). The TG
neurons are unipolar (pseudounipolar) with a single
axon, which divides into a peripheral and a central
branch. The perikarya are completely surrounded
by a layer of small glial cells known as satellite
cells, so they are free of synaptic contacts
(Pannese, 1981).

It is currently believed that sensitisation of the
trigeminal system, including the neurons of trigem-
inal ganglia, is involved in the pathway leading to
migraine pain (Malick and Burstein, 2000). Further-
more, trigeminal nerve fibers extend from the
trigeminal ganglia to the trigeminal Nucleus cau-
dalis located in the brain stem, which is responsible
for the transmission of nociceptive information
to higher brain centres, where pain is perceived
(Kaube et al., 1993; Goadsby and Hoskin, 1997).
Several neurotransmitters are located in trigeminal
neurons including calcitonin gene-related peptide,
substance P, neurokinin A, pituitary adenylate
cyclase activating peptide (PACAP), amylin and
nitric oxide (NO) (Tajti et al., 1999).

The free radical gas, nitric oxide, functions as a
major messenger molecule in both central and
peripheral trigeminal primary afferent neurons
(Schuman and Madison, 1991; Snyder, 1992). Rather
than acting via traditional receptors on postsynap-
tic membranes, this molecule exerts its effects by
diffusion into the adjacent neuron to activate
soluble guanylyl cyclase. NO is produced in neurons
from L-arginine by a constitutive (neuronal) form
of NO synthase (nNOS), an enzyme localized in
neurons and which requires activation by intracel-
lular calcium of a calmodulin-sensitive site, or by
an inducible form of NOS (iNOS) localized predo-
minantly in the glia, which requires activation by
endotoxins and cytokines. A third form is endothe-
lial NOS (eNOS), which generates NO in blood
vessels and plays a role in regulating vascular
function. The NO acts as a second messenger by
activating the soluble guanylate cyclase leading to
increased levels of cyclic guanosine monopho-
sphate.

nNOS acts as a neural transmitter with several
important functions in memory (Bult et al., 1990;
Schuman and Madison, 1991) and pain transmission
(Martucci et al., 2008). It is present in trigeminal
primary afferent neurons, both peripherally within
the TG and centrally in the MTN (Lazarov and
Dandov, 1998; Lazarov et al., 1998). Moreover,
its histochemical marker is generally considered to
be NADPH-d and parallel application of nNOS and
NADPH-d immunohistochemical localization results
in similar, though not identical, distributional
patterns (Traub et al., 1994). iNOS is expressed
only in pathological conditions (Jenkins et al.,
1994) and is induced by pro-inflammatory cytokines
and/or endotoxins (Jenkins et al., 1994).

NOS immunoreactivity of trigeminal neuronal
bodies and its colocalization with a wide range
of neurotransmitters has led to the suggestion that
NO is a key molecule involved in modulation of
sensitive pathways (Yasuhara et al., 2007; Martucci
et al., 2008).

To the best of our knowledge, there is little
information on the presence of NOS isoforms in
neurons of trigeminal ganglia in humans. The aim
of this study was to describe the morphology
and nNOS/iNOS immunolocalization in trigeminal
ganglia using immunohistochemical techniques.
The information obtained may provide an impor-
tant tool to improve our understanding of the role
of NO in neural transmission and modulation.
Materials and methods

Tissue processing

The trigeminal ganglia were removed, with Ethic
Commitee permission, bilaterally from six cadavers
(three females and three males) with an average
age of 71 years (60–82 years) used in the dissection
courses for medical students at Vienna University.
None of the donors had suffered from any nervous
system disease. Tissue was collected within 48h of
death, frozen on dry ice and stored at �20 1C. Serial
frozen sections were cut at 12mm thickness using a
cryostat and mounted on poly-L-lysine-coated glass
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slides (Sigma–Aldrich, St. Louis, MO, USA); alter-
nate sections were then processed for morphologi-
cal staining and for NOS immunohistochemistry.
Morphological analysis

The distribution of the different classes of
neurons in human trigeminal ganglia was assessed
using toluidine blue staining, a useful method to
visualize the cytoarchitecture of the nervous
system (Ricci et al., 2006; Rodella et al., 2008).
All analyses were performed in a ‘blinded’ manner
and were measured in six sections for each gang-
lion: two sections of the anteromedial portion, two
sections of the middle portion and two sections of
the posterolateral portion (Jannetta, 1967; Mar-
furt, 1981). The neurons were subdivided into three
groups according to perikaryonal diameter: small
cells (under 30 mm), medium-sized cells (30–60 mm)
and large-sized cells (over 60 mm) (according to Hou
et al., 2003). Digital images of the slides at 200�
magnification were analyzed using an optical
microscope (Olympus BX50 upright microscope for
transmitted light brightfield, Hamburg, Germany)
equipped with image analysis software (Image-Pro
PlusTM 4.5.1, Milan, Italy). Only the neurons with a
clearly visible nucleus were considered. The per-
centage of neurons for each class was evaluated in
10 randomly selected fields with identical areas
examined for each section.
nNOS and iNOS immunohistochemistry

Unfixed cryostat sections were washed in Tris-
buffered saline (TBS), fixed in cold acetone for
10min and treated with 3% hydrogen peroxide
(H2O2) in methanol (1:1) for 10min. The sections
were incubated in normal goat serum (Vector
Laboratories, Burlingame, CA, USA �10% in TBS
containing 0.1% Triton X-100) for 30min and then
incubated in rabbit polyclonal primary antiserum
directed against nNOS (Cayman 160870, Ann Arbor,
MI, USA – diluted 1:200) or iNOS (Santa Cruz
Biotechnology sc-651, Santa Cruz, CA, USA – diluted
1:500) prepared in phosphate-buffered saline con-
taining 3% normal goat serum and 0.1% Triton
X-100, for 24 h at 4 1C. After incubation in the
primary antiserum, the sections were subsequently
incubated in biotinylated goat anti-rabbit immu-
noglobulins (Vector Laboratories, – IgG, 7.5 mg/ml)
for 30min and avidin–biotin peroxidase complex for
30min, using an ABC kit according to the manifac-
turer’s protocol (Vector Laboratories). The reaction
product was visualized using 0.0006% hydrogen
peroxide and 0.5 mg/ml diaminobenzidine (Sigma–
Aldrich, St. Louis, MO, USA) as a chromogen, for
5min. Specificity of the immunohistochemical
labelling was confirmed by omitting the primary
antiserum, using sections incubated with normal
serum alone, and also using isotype controls
incubated with the same concentration of primary
antibodies. The sections were counterstained with
methyl green, dehydrated in ethanol, cleared in
xylene, mounted in DPX (Sigma–Aldrich) and finally
observed using an Olympus BX50 microscope. The
immunolabelling intensity was computed as inte-
grated optical density (IOD) using image analysis
software as described below.
Quantitative analysis of labelling

We evaluated immunolabelling in human trigem-
inal ganglia. All analyses were performed ‘‘blind’’
(on coded sections) and measurements made on six
sections for each ganglion: that is, two sections of
the anteromedial portion, two sections of the
middle portion and two sections of the poster-
olateral portion considering the somatotopic orga-
nization of trigeminal ganglia (Jannetta, 1967;
Marfurt, 1981). Digital (frame-grabbed) images
at 200� magnification were analyzed using an
optical microscope (Olympus BX50) equipped with
an image analysis program (Image-Pro PlusTM

ver.4.5.1, Milan, Italy). Only the neurons with a
clearly visible nucleus were considered. Back-
ground determined from an empty surface of the
slide was subtracted from the immunolabelling
intensity measure.

The percentages of NOS-immunopositive neurons
with respect to the total number of neurons for
each class were determined counting 10 randomly
collected fields of identical areas (0.86mm2) for
each section and the results were compared with
the total number of neurons for each class found in
the toluidine blue stained sections.

The IOD for NOS immunohistochemistry was
calculated for arbitrary areas, measuring the
neurons in 10 randomly collected fields with the
same area for each section. Labelling intensity was
computed as IOD according to Goettl et al. (2003).
The data were pooled to represent a mean value
and a statistical analysis was applied to compare
the results obtained from the samples.
Statistical evaluation

Distribution of neuronal population with respect
to size

The data were analyzed and compared by
analysis of variance (ANOVA) and by a Bonferroni
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multiple comparison test. The p value threshold
was 0.05.

Distribution of NOS-immunopositive neurons
This parameter was evaluated using a log-linear

model.

Relationship between intensity of NOS
immunolabelling and neuronal size

This parameter was evaluated using a multilevel
model. IOD and neuronal size were considered in a
logarithmic scale.
1
2

C

Figure 1. Schematic drawing of the human trigeminal
ganglia. Op, ophthalmic division; Mx, maxillary division;
Mn, mandibular division; A, anteromedial portion; B,
middle portion; C, posterolateral portion; 1–6, site of the
six sections.
Results

Distribution of neuronal population with
respect to size

We evaluated the percentage of neurons with
respect to their perikaryonal size. We observed
that the neuronal population in ganglia is rich in
medium-sized neurons (81–85%) in comparison with
small-sized (9.75%) and large-sized (8.39%) neurons
(Figure 1).

Distribution of NOS-immunopositive neurons

Positive immunolabelling was visible in the
cytoplasm of the neurons as a diffuse positivity
(Figure 2). We estimated that the total number
of nNOS-immunopositive neurons constitute about
50% of the overall number of neurons. The
percentage of immunopositive small-sized neurons
was about 48%; with about 56% of the medium-sized
neurons labelling positively, and the percentage of
large-sized immunopositive neurons was about 69%.
This shows that the number of large-sized neurons
labelling positively was statistically (po0.05)
higher than the small and medium-sized neurons
(Figure 3).

The immunolabelling intensity of iNOS was very
weak and only seen in a limited number of neurons,
so it was not possible to undertake a quantitative
evaluation.

Relationship between intensity of NOS
immunolabelling and neuronal size

The intensity of nNOS immunolabelling in neu-
rons was significantly associated with the neuronal
size. The IOD values were statistically different
between small/medium and large neurons with the
small and medium-sized neurons presenting higher
IOD values than the large-sized neurons (Figure 4).
Discussion

In this study, we describe the distribution of the
neuronal population in human trigeminal ganglia
with respect to neuronal size and NOS immunolo-
calization. According to previous reported data,
the analysis of trigeminal ganglion neuronal size in
the human has revealed three distinct groups. The
small ganglion cells with a conduction velocity
corresponding to the C fiber category are consid-
ered to be nociceptive with respect to their sensory
modality (Lazarov, 2002). The medium- to large-
sized ganglion cells have conduction velocities in
the A-beta and -delta fiber categories, which are
representative of low-threshold mechanorecep-
tors, thermoreceptors and nociceptors (Galeano
et al., 2000; Hou et al., 2003). NOS is localized in
neurons of both the central and peripheral nervous
systems (Bredt et al., 1990). Information regarding
cellular localization of NOS has been obtained by
NOS-immunohistochemistry and in situ hybridiza-
tion (Bredt et al., 1991; Verge et al., 1992) and by
the histochemical technique for demonstration of
NADPH-diaphorase (Dawson et al., 1991; Hope
et al., 1991). Using NADPH-diaphorase staining
and NOS immunohistochemistry, several studies
have underlined the occurrence of NOS in sensory
neurons (Aimi et al., 1991; Terenghi et al., 1993;
Stoyanova and Lazarov, 2005) suggesting its role in
the neuronal transmission of sensory information in



Figure 2. nNOS immunolabelling of trigeminal ganglia (counterstained with methyl green): (a) arrow indicates strongly
immunopositive medium-sized neuron; (b) arrow indicates strongly immunopositive small-sized neuron; (c) arrow
indicates weakly immunopositive medium-sized neuron and (d) black arrow indicates faintly immunopositive large-
sized neuron and white arrow indicates faintly immunopositive small-sized neuron. Bar: 30 mm.
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Figure 3. Distribution of nNOS-immunoreactive neurons. The distribution of nNOS-immunoreactive neurons was
expressed as a percentage of positive neurons respect to the total neuronal population in each class of neurons (small-
medium- and large-sized neurons) (n ¼ 6). The values are expressed in percentage as mean7SD. *po0.05 vs. small.
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TG. Several studies have revealed widespread
nNOS-immunoreactivity and NADPH-diaphorase
activity in the TG in different animal species
(humans: Tajti et al., 1999; pigs: Sienkiewicz
et al., 1995; cats: Lohinai et al., 1997; rats:
Aimi et al., 1991; Alm et al., 1995; chicks: Brüning
et al., 1994a; quail: Panzica et al., 1994; turtles:
Brüning et al., 1994b).

Using nNOS-immunohistochemistry, we found
that nNOS immunolabelling was detectable in
about 50% of trigeminal neurons and they were
mainly large-sized neurons. This result is different
from some other previous studies, but this is not
surprising since the data in the literature also differ
from each other (Tajti et al., 1999; Hou et al.,
2003; Gottanka et al., 2005). Tajti et al. (1999)
showed about 15% NOS-immunoreactive perikarya,
Gottanka et al. (2005) reported 18% of nNOS-
immunoreactive perikarya and Hou et al. (2003)
indirectly reported about 35% of nNOS-positive
neurons. These discrepancies could be due to
different fixation protocols and sensitivity of the
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Figure 4. Relationship between intensity of nNOS im-
munopositivity and neuronal size. Evaluation of intensity
of nNOS immunolabelling as IOD in small, medium and
large neurons (n ¼ 6). The values are expressed in
percentage as mean7SD. *po0.05 vs. small.
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primary antibody. For this reason, in this study, we
did not use aldehydic fixation. In addition, in all the
previous studies, the cutting protocol was not
specified and this is important information con-
sidering the somatotopic organization of trigeminal
ganglia and neccessity to identify the portions
of the ganglia examined (Jannetta, 1967; Marfurt,
1981). Finally, as reported in this paper, the
immunolabelling was not homogeneous in all kinds
of neurons. In particular, the large-sized neurons
were not heavily labelled. They are relatively more
sensitive to fixation and may not have been
counted as immunopositive neurons by some
authors.

The presence of NOS-immunoreactive trigeminal
neuronal bodies and the colocalization of NOS with
a wide range of neurotransmitters has led to the
suggestion that NO is a key molecule for modulating
sensory pathways (Yasuhara et al., 2007; Martucci
et al., 2008). It appears that neurons of the
trigeminal ganglia provide a somewhat richer
source of NO immunoreactive neurons in humans
as compared with cats and rats (Nozaki et al., 1993;
Edvinsson et al., 1998; Rodella et al., 2000).

The intensity of nNOS immunopositivity was
statistically different between the different classes
of neurons. We found a higher immunolabelling
intensity in the small- and medium-sized neurons.
These data agree with some observations in cats
that the neuronal cell bodies showing higher
intensities of NOS immunolabelling were predomi-
nantly of small to medium size (Lohinai et al.,
1997; Edvinsson et al., 1998; Lazarov et al., 1998),
probably of a nociceptive nature (Wang et al.,
1996, 1997; Martucci et al., 2008).

iNOS immunolocalization was not observed and
this is probably because, according to the litera-
ture, this isoform is only expressed in pathological
conditions (Jenkins et al., 1994). iNOS expression
is induced by pro-inflammatory cytokines and/or
endotoxins (Jenkins et al., 1994). Administration of
the NO donor, glyceryl trinitrate to rats causes
neurogenic inflammation of the dura mater with
increased levels of iNOS 4–6 h after the infusion
(Reuter et al., 2001). NO is also involved in the
sensitization of sensory nerve endings (Malick and
Burstein, 2000) where NO may act in concert with
prostaglandins, histamine, bradykinins and neuro-
peptides (Strassman et al., 1996; Ebersberger
et al., 1997). In primary cultures of rat trigeminal
cells, data indicate that iNOS expression may
involve a molecular mechanism mediating the
adaptive responses of trigeminal ganglia cells to
the serum free stressful stimulus found in tissue
culture environments. It may act as a cellular
signalling molecule that is expressed after cell
activation (Jansen-Olesen et al., 2005).

In conclusion, it appears that NO is a key
molecule that may modulate the transmission of
sensitivity from the periphery to the neocortex and
its high expression in different subpopulations of
human trigeminal neurons may indicate its pivotal
role in neurotransmission.
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